RL78 100pin 評価ボード (簡易エミュレータ機能内蔵) ユーザーズマニュアル 第1版

※ 本マニュアルに記載されたすべての情報は発行時点の内容で、予告なしに仕様が変更 されることがあります。

目次				
1.	概要	. 2		
	1. 1. 特徴	$\cdot \cdot 2$		
	1.2. ボード外観・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···2		
~		··· 3		
2.	間易エミュレータ部の部品配直	. 3		
	2.1. [①] エミュレータインターフェース······	•• 3		
	2. 2. [②] ACT LED····································	$\cdot \cdot 4$ $\cdot \cdot 4$		
	2.4. [④] 簡易エミュレータ機能動作スイッチ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 4$		
	2.5. [⑤] 電源選択スイッチ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 5$		
3.	ターゲット MCU 部の部品配置	. 6		
	3.1. [①] エミュレータ インターフェース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 6$		
	3.2. [②] MCU 信号用ヘッダ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	···6		
	3. 3. $[④]$ リセットボタン····································	7		
	3. 5. [⑤] ターゲット MCU ·······	$\cdot \cdot 7$		
	3.6. [⑥] 外部電源コネクタ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 7$		
4.	分離後の使用法	. 7		
5.	CS+へのデバッガ組み込み	. 9		
	5.1. USB ドライバのインストール · · · · · · · · · · · · · · · · · · ·	9		
	5.2. CS+でのデバッガの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 9		
6.	RFP を利用したプログラミング	10		
	6.1. RFP でのプログラミング手順 · · · · · · · · · · · · · · · · · · ·	· 10		
7.	ターゲット MCU 部のコネクタと信号配置 (Top View)	13		
Q		1/		
0.		14		
	8.1. MUU & 小一 トコイソタ ····································	· 14 · 15		
a	簡早てミュレー々機能値田時の注音車値	16		
J.	॥ 勿 亠 ヽ ユ レ ノ 1 滅 肥 仄 川 町 ツ 江 心 宇 久	10		
10.	◎	. I <i>I</i>		

1. 概要

本製品は、ターゲット MCU と RL78 用簡易エミュレータ(E2OB)機能が一つになった評価 用ボードです。

1.1. 特徴

本ボードは、単体で e2studio や CS+と言った統合開発環境を用いてターゲット MCU のプロ グラムの開発・書き込み・デバッグや評価が可能です。また、ターゲット MCU 部から RL78 用簡易エミュレータ部(E20B 部)を切り離し、ケーブルで接続して使うことができます。

ターゲット MCU 部は、簡易エミュレータ部(E20B 部)に接続した USB ケーブルから電源 を供給して動作したり、外部から電源を供給して単独で動作したりすることが可能です。

1.2. ボード外観

図 1.1 100P モデルの外観

1.3. ブロック図

2. 簡易エミュレータ部の部品配置

図 2.1 簡易エミュレータ部の主な部品配置

2.1. [①] エミュレータインターフェース

ターゲット MCU 部と簡易エミュレータ部を切り離した場合に、切り離したターゲット MCU 部と簡易エミュレータ部を接続するためのコネクタです。 ターゲット MCU 部と分離する前には、このコネクタは使用することはできません。

2.2. [2] ACT LED

簡易エミュレータ機能の動作状態を表わす LED で、下に示す状態を表します。

ACT LED の状態	説明
消灯	USB から電源が供給されてない等簡易エミュレータ機能が使え ない状態です。外部から電源は供給できません。
点滅	デバッガが USB を経由して簡易エミュレータ部を認識した状態 です。外部から電源を供給または、供給停止できます。
点灯	簡易エミュレータ部がターゲット MCU との接続を確立した状態 です。外部からの電源を供給停止できます。

表 2.1 簡易エミュレータ部 ACT LED の動作説明

2.3. [③] USB コネクタ

簡易エミュレータ部を PC に接続するための microUSB コネクタです。

2.4. [④] 簡易エミュレータ機能動作スイッチ

簡易エミュレータ機能の動作を設定するスイッチです。

設定	説明
Debug Free run	簡易エミュレータ機能でデバッグします。 ターゲット MCU は独立 には動作できません。
Debug Free run	簡易エミュレータ機能の動作を禁止し、ターゲット MCU を単独で 動作させることができます。

表 2.2 簡易エミュレータ機能動作スイッチの設定

2.5. [5] 電源選択スイッチ

USB を通じて供給する動作電圧を選択するスイッチです。スイッチの設定により簡易エミュレータ部とターゲット MCU 部に供給される電源電圧が変わります。

表 2.2 電源選択スイッチの機能

区分	説明
on off 1 2	ターゲット MCU を 4V~5.3V で動作させる設定です。 ・ 全体の電源電圧を 5V に設定します。 ・ ACT LED が点滅時にターゲット MCU には外部から 4V~5V の 電源を供給します
on off 1 2	 ターゲット MCU を 2.7V~3.3V で動作させる設定です。 ・ 全体の電源電圧を 3.3V に設定します。 ・ ACT LED が点滅時にターゲット MCU には外部から 2.7V~3.3V の電源を供給します。
on off 1 2	ターゲット MCU を USB からの 5V で動作させる設定です。 ・ 全体の電源電圧を 5V に設定し、 ・ ターゲット MCU にも 5 V を供給します。
on off 1 2	ターゲット MCU を USB からの 3.3V で動作させる設定です。 ・ 全体の電源電圧を 3.3V に設定し、 ・ ターゲット MCU にも 3.3V を供給します。

表 2.3 電源選択スイッチの各状態の説明

図 3.1 ターゲット MCU 部の主な部品配置

3.1. [①] エミュレータ インターフェース

ターゲット MCU 部を簡易エミュレータ部から切り離した状態で、 簡易エミュレー部を接 タを接続するためのコネクタです。 簡易エミュレータ部から切り離す前には使用できません。

3.2. [②] MCU 信号用ヘッダ

2個の2列ピンヘッダには、ターゲット MCU の全ての信号が引き出されていて、外部で信号を使用することができます。

3.3. [③] UART コネクタ(UART 信号用ヘッダ)

4 ピンのヘッダには、UART の TXD 信号と RXD 信号に加えて、VCC と GND も接続されてい ます。100 ピンの製品では 4 個のヘッダが実装され、それぞれ UART0~UART3 に接続され ています。

3.4. [④] リセットボタン

ターゲット MCU のリセットに接続されているタクトスイッチです。このスイッチを押すこ とで、ターゲット MCU をリセットすることができます。

3.5. [⑤] ターゲット MCU

100 ピンの製品では、RL78/G13の R5F100PJ が実装されています。

3.6. [⑥] 外部電源コネクタ

「図 4.1 簡易エミュレータ部ボードの分離時写真」の写真に示すように、簡易エミュレータ 部とターゲット MCU 部が分離されているときは、ターゲット MCU の電源電圧許容範囲内 の電源を供給します。

分離されていないときには、デバッグ機能が動作する 3.3V~5V の電源をお勧めします。

重要:電源は ACT LED が点滅時に供給開始してください。USB 接続を外す前に供給を停止 してください。

4. 分離後の使用法

図 4.1 簡易エミュレータ部ボードの分離時写真

上の写真に見える矢印の部分を中心にボード両側を掴んで折れば、ターゲット MCU 部と簡 易エミュレータ部を分離できます。

「図 4.3 切り離した簡易エミュレータ部とターゲット MCU 部を E1 エミュレータのケーブ ルで接続した例」の写真に見えるケーブルは、E1 エミュレータ EOL の構成品に含まれてい るケーブルを使用しましたが、両端に 2.54mm ピッチの 7 信号×2 列のコネクタが付いた 14 ピンの平行ケーブルであれば使用できます。

図 4.2 E1 エミュレータ(EOL)の構成品ケーブル

図 4.3 切り離した簡易エミュレータ部とターゲット MCU 部を E1 エミュレータのケーブ ルで接続した例

5. CS+へのデバッガ組み込み

5.1. USB ドライバのインストール

簡易エミュレータ機能デバッガを使用するには、最新版の CS+がインストールされている 必要があります。最新版 (V8.03 以降のバージョン) がインストールされていない場合には、 最新版をインストールしてください。その際に、(簡易エミュレータ機能に対応している) E2Lite 用の USB ドライバがインストールされます。

このボードを接続しても CS+が簡易エミュレータ機能を認識しないときには、(簡易エミュレータ機能に対応している) E2Lite 用の USB ドライバがインストールされていません。

5.2. CS+でのデバッガの設定

CS+の上段メニューから デバッグ(D)」 → 「使用するデバッグ・ツール(L)」 → 「RL78 E2 Lite(E)」 を選択してください。

(1	デバ	ッグ(D) ツール(T) ウインドウ(W) ヘル	プ(H)		
		デバッグ・ソリューション(S)	•		DefaultBuild
	D,	デバッグ・ツール ヘダウンロード(D)		T(S)	
	6	ビルド&デバッグ・ツール ヘダウンロード(B) F6	2(3)	
	5	リビルド&デバッグ・ツールへダウンロード	(W)		
		デバッグ・ツールへ接続(C)			
	D\$	デバッグ・ツールからアップロード(U)			****
\bigcirc	X	デバッグ・ツールから切断(N)	Shift+F6	pt e	dit comment generated
Ľ		使用するデバッグ・ツール(L)	•		RL78 IECUBE(I)
		停止(S)	Shift+F5		RL78 E2(2)
		実行(G)	F5	~	RL78 E2 Lite(E)
	D	ブレークせずに 実行(E)	F8		RL78 E1(Serial)(L)
	91	ステップ・イン(1)	F11		RL78 E20(Serial)(R)
	Ç.	ステップ・オーバー(O)	F10		RL78 EZ Emulator(Z)
	Ċ _I	リターン・アウト(R)	Shift+F11		RL78 シミュレータ(S)
	۲H	CPUリセット(T)	Ctrl+F5	COM	ment generated here */
	н.	リスタート(A)			
	•	デバッグ・ツールの状態を巻き戻す(W)	Ctrl+F11		
		デバッグ・ツールの状態保存(V)	•		

図 5.1 CS+でのデバッグ設定-1

デバッグ・ツールが E2 Lite と設定されれば、プロジェクト・ツリーで RL78 E2 Lite (デバッ グ・ツール)という項目が表示されます。

該当項目をダブル クリックしてプロパティ画面を表示して、「接続用設定」 タブの「ターゲ ット・ボードとの接続」の項目の「エミュレータから電源供給をする(最大 200mA)」が「い いえ」になっていることを確認してください。

プロジェクト・ツリー	ά χ	🚰 プロパティ 📝 r_mainc 🕮 コード生成*	
2 🕜 🙎 🔳		א א א א א א א א א א א א א א א א א א	
<u> e2ob 100p target (プロジェクト)*</u> Esctoop(マイクロコントローラ)		✓ PBROM/RAM	050
☆… 🎾 端子配置 (設計ツール)		14目2 FOLMサイズ[バイト] 内部 RAMサイズ[バイト]	20480
☆… 🖳 コード生成 (設計ツール)		データフラッシュ・メモリ・サイズ[Kバイト] シ クロック	8
 RL78 E2 Lite (デパッグ・ツール) 		メイン・クロック周波数[MHz] サブ・クロック周波数[kHz]	内蔵クロックを使用する 内蔵クロックを使用する
	•	モニタ・クロック	システム
■			
cstart.asm		4 エミュレータから電源供給をする(最大200mA)	()(),Ż
iodefine.h		マレフランユ ヤキュリティID	
		ターゲット・ボードとの接続	
	(2) 接続用設定 「デバッグ・ツール設定 〈 ダウンロード・ファイル設定 〈 フック処理設定 〉	/
	1		

図 5.2 CS+でのデバッグ設定-2

6. RFP を利用したプログラミング

6.1. RFP でのプログラミング手順

1. 簡易エミュレータを USB ケーブルで PC と連結した後、デバイスマネージャを実行 して Renesas E2 Lite が表示されるか確認します。

2. RFP(Renesas Flash Programmer)を起動し、RFP のメニューで「ファイル(F)」→ 「新しいプロジェクトを作成(N)…」をクリックします。

Renesas	Flash Programme	r V3.05.03	(無償版)	
7711/(F)	デバイス情報(D)	ヘルプ(H)		
新しい	プロジェクトを作成(N	l)	フェークコード	
プロジ プロジ	ェクトを開く(O) ェクトを保存(S)			
イメー: ファイノ	ジファイルを保存(I) レチェックサム(C)			
1 RL7 2 RL7 3 sam	8G10_10.rpj 8G10_Ra.rpj 101e2A_16.rpj 8G10_PWM2_rpi	re	emi_3¥DefaultBuild¥Ra_440Hz_2.mot	 参照(B)
終了(X)			

図 6.2 RFP での書き込みプロジェクトの新規作成画面

3. 「マイクロコントローラ(M)」は、「RL78」を選択し、プロジェクトの名前を入力した後、「ツール(T)」で「E2 Lite」を選択して、「ツール詳細(D)…」ボタンを押して電源設定画面を開き、「供給しない(N)」を選択し、「OK」をクリックして電源設定画面を閉じたら、「接続」をクリックします。

図 6.3 RFP での書き込みプロジェクトの設定画面

 「参照…(B)」をクリックして、書き込むプログラム(オブジェクト)ファイルを選 択した後「スタート(S)」をクリックします。

プロジェクト情報	
現在のプロジェクト: RL78.rpj	
マイクロコントローラ:R5F100PJ	
プログラムファイル	
E:₩シアル₩E20B_sample₩e2ob_100p_ttarget₩DefaultBuild₩e2ob_100p_target,h	ex 参照(<u>B</u>)
CRC-3	2 : F9879B08
フラッシュ操作	
(2)消去>> 書き込み>> ベリファイ	
スタート(<u>S</u>)	
デバイス情報を取得します。 デバイス 情報を取得します。	^
Device Code : 10 00 06	
Firmware Version : V3.03	
Code Flash (アドレス:0×00000000、サイズ:256 K、消去サイズ:1 K) Data Flach (アドレス:0×0000E1000、サイズ:256 K、消去サイズ:1 K)	
ツールから切断します。 兼作が成功しました。	
	~
	ステータスとメッセージのクリア

図 6.4 RFP での書き込むオブジェクトを指定しての書込み開始画面

RFP 下側の結果表示ウィンドウに書き込んだアドレス範囲が表示され、「操作が成功しました。」が表示されて、書き込みが正常に完了したことを示します。

フラッシュ操作				
消去 >> 書き込み >> ベリファイ				
スター	-		正常終了	
[Code Flash] 0x00000000 - 0x000003FF [Code Flash] 0x0000FC00 - 0x0000FFFF	サイズ:1 K サイズ:1 K			^
ベリファイを実行します。 [Code Flash] 0×00000000 – 0×000003FF [Code Flash] 0×0000FC00 – 0×0000FFFF	サイズ:1 K サイズ:1 K			
ツールから切断します。 操作が成功しました。				
				~
		ス	テータスとメッセージのクリア((C)

図 6.5 RFP での書き込み完了画面

7. ターゲット MCU 部のコネクタと信号配置(Top View)

図 7.1 100P モデルのコネクタ及び信号配置

8. 回路図

8.1. MCU & ポートコネクタ

図 8.1 100P モデルの回路図 - MCU とコネクタ

8.2. 電源、UART コネクタ...

9. 簡易エミュレータ機能使用時の注意事項

- 1) 複数の評価ボード(簡易エミュレータ部)を同時に同じ PC に接続して使用することは できません。
- 2) RFP で「書き込み後にターゲット MCU が動作する設定」は禁止です。
- 簡易エミュレータ部の RESET_OUT は電源投入後、約 20ms 間 HiZ(ハイインピーダンス 状態になります。RESET ピンがユーザシステムでプルアップ(Pullup)されていれば、この 期間リセット状態が解除されます。
- 4) USB から簡易エミュレータ部を介して電源を供給する場合、200mA 以上は使用しない でください。
- 5) ACTLED が消灯しているときには、外部電源から電源を供給してはいけません。また、 外部電源から電源を供給しているときには、USB の接続を外してはいけません。これが 守られない場合には、簡易エミュレータ部が壊れる可能性があります。
- 6) 簡易エミュレータ部をターゲット MCU 部から切り離し、ケーブルで接続する場合には、 簡易エミュレータ部がターゲット MCU 部に接続した回路に接触して信号がショートす る危険性があります。切り離した簡易エミュレータ部は同梱されているケースに入れる ことでショートの発生を防止してください。

10. 改版履歴

版数	日	内容
1版	2020/09/29	新規作成